QUASISTATIONARY FLOW OF A REACTING FLUID,
LOSING FLUIDITY WITH HIGH DEGREES OF TRANSFORMATION

D. A. Vaganov : UDC 532.542:660.095.26

Due to velocity differences in the flow of a reacting fluid, the degree of transformation at the walls can
greatly exceed the average value over the cross section, and if the reacting fluid loses fluidity with high degrees
of transformation, then a confinuous growth of a congealed layer of the reaction products occurs at the walls.
Thus, in the case of polymerization at high monomer concentrations {(or in the bulk), reactor channels and
pipelines are cbhserved to be overgrown with the polymer. This phenomenon is well known to engineers, but
theoretical investigations of the dynamics of this process have not been carried out. In this paper, the dy-
namics of the process will be examined under the following assumptions: Thetemperature of the reacting fluid
remains constant, the fluid is a Newtonian fluid, the flow is laminar, and the process is quasistationary. Rela-
tions are obtained that permit forecasting the rate of growth of the stationary layer of reaction products. In
addition to the hydrodynamic characteristics, the rate of growth depends also only on a single parameter,
which is determined by the nature of the change in the viscosity with time and is found from a solution of a
self-similar boundary-value problem.

1. We are examining the isothermal flow of a reacting Newtonian fluid, which losses fluidity at high
degrees of transformation. The fluid is assumed to be guite viscous, while the change in the radius of the flow
along the pipe (of a flow-through tubular reactor) is smooth encugh that in each separate section, the fluid flow
can be assumed to be practically plane-parallel. This approximation is widely used in theoretical investiga-
tions of different problems concerning the flow of a fluid with variable properties (see, for example, [1~31); in
order to find the flow velocity in this approximation, it follows from the general equations of motion of a New-
tonian fluid {4] that

12(w2)+2~0, 0<r<R,H,0<:<L, (1.1)

where v is the axial component of the flow velocity; y, viscogity of the fluid; r, distance from the axis of the
pipe; p =plz, t), difference between the pressure at the inlet to the tube and the pressure at the given section;
z, distance from the beginning of the pipe; R, radius of the flow (inner radius of the stationary layer of reac-
tion products); L, pipe length; and t, time. We shall assume that the density of the fluid p is constant and the
radial component of the velocity w is obtained from the equation of continuity

1 8 b,
<5 (rw) + ?1; =0, (1.2)

In view of the smallness of the diffusion coefficients in fluids, the effect of diffusion on the flow of the re-
action in the flow can be neglected. In this connection, at any point of the flow of the reacting isothermal fluid,
the depth of transformation and the mechanical properties of the fluid depend only on the time, during which the
given element of fluid is already found in the flow (flow-through reactor). The fluid motion has no effect on
these dependences and they can be assumed to be fixed.

The loss of fluidity formally means that after the passage of some period of time t;, determined by the
rate of the chemical transformations, the viscosity of the fluid becomes infinite. In accordance with this, we
shall assume a time dependence of the viscosity in the form

Ho/p = £(9), (1.3)

where p, is the value of the viscosity, corresponding to the initial fluid; ¢ is the dimensionless time, passing
from the time that the element of the fluid enters the reactor. As ¢ increases, the function f(¢) decreases
from the value f =1 at ¢ =0, f(8) =0for ¢ > 1. For 4 < 1, f() > 0.
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The rate of growth of the stationary layer of reaction products is determined by the condition that the
time over which the fluid elements reach the surface of this layer equals t;,. The distribution ¢ =&, z, r)
must thus be such that at the periphery of the flow the condition 4 =1 be satisfied. At the beginning of the
pipe (reactor), 4 =0, and then the value of ¢ increases with distance downstream along the flow. For a fixed
fluid element, the increment to 4 is related to its displacement and velocity along the flow by the relation d¢ =
dz /vt

Compared to the average residence time of the fluid in the reactor, the period t; is assumed to be suffi-
ciently long that the change inthe properties of the fluid affect only a narrow layer moving at the edges of the
flow and appreciable changes in the flow radius occur only over a time greatly exceeding t,. The flow charac-
teristics and their rate of change with time, in this case, will be completely determined by the running distribu-
tion of the radius of the flow along the pipe and for this reason it is appropriate to call the given approxima-
tion a quasistationary approximation,

The approximation indicated means that

Uigt, <« 1, (1.4)

where Q is the volume flow rate of the fluid; U is the volume of the channel, free of the stationary layer of re-
action products:

Uz t) = [ aR2 (@ tydL. (1.5)

Condition (1.4), in any case, is satisfied near the beginning of the pipe. And, since the free volume of the chan-
nel U decreases with growth of the stationary layer of reaction products, even if condition (1.4) is not initially
satisfied for part of the pipe, with time and with the same fluid flow rate, the required degree of smallness of
the quantity U/Qt, will be attained over the entire length of pipe. The effect of the preceding nonquasistationary
stage could be taken into account by giving an appropriate distribution of the flow radius.

From the mathematical point of view, the quasistationary approximation being examined corresponds to
the leading term in the asymptotic expression for U/Qt,— 0.

2. We shall first examine a model example, in which the viscosity of the fluid remains unchanged through-
out the period t, £(:4) =1 for all ¥ < 1. The solution of the problem in this case is greatly simplified, since it
is no longer necessary to examine the hydrodynamic part. The flow velocity in each separate section is de-
scribed by a parabolic Poiseuille profile

v = (2Q/aR¥)(1 — r*/R?, 0 < r < R(z, 1), 2.1)

We shall denote by q =q(t, z, r) the amount of fluid, crossing the section z = const at a given time at dis-
tances from the axis greater than a given value r

q = \ v2nrdr, (2.2)

ek

and we shall follow the value of q, corresponding to a fixed fluid element. Since from (2.2), taking into account
(1.2), it follows that

dqlor = —2nrv, 09/dz = 2mrw. ' (2.3)

We have for the change in the value of g corresponding to the fixed element

dg/dt = 8g/dt + vdg/dz + wdglor = aglot. 2.4)
Substitution of (2.1) into (2.2) shows that in this case
g = Q(1 — rY/RY?, @.5)

from which it follows, taking into account (2.1), that
- 8qlot = vn(OR* o)/ R?, (2.6)

while, since within the seope of the quasistationary approximation it is sufficient to limit the analysis to fluid
elements moving at the edges of the flow, in (2.6), we can set r2/ R® ~ 1. As a result, substituting (2.6) into
(2.4) and integrating along the trajectory of motion, we have
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z
1=+ [ as, (2.7)
0

where q, is the value of the quantity q at the pipe inlet corresponding to the given fluid element, while the values
of 9R%z, t)/ 8t in calculating the integral are taken for those times at which the fluid element being examined
intersects the given section. But, according to the assumptions made, the changes in the quantities occurring
over time intervals of the order of t; can be neglected.” For this reason, in (2.7), all quantities can be assumed
to relate to the same time and, changing the order of the integration and differentiation operations, relation
(2.7) taking into account (1.5) can be represented in the form

q=4q, + Ut (2,0 (2.8)

Relation (2.8) already permits relating the parameters of the trajectory of a separate fluid element to
the rate of growth of the stationary layer of reaction products. Thus, if the fluid element being examined
reaches the surface of the stationary layer of products at a distance z; from the beginning of the pipe, then,
determining the value of ¢, corresponding to this element from the condition that on the surface of the station-
ary layer-q = 0, from (2.8} we obtain for its trajectory of motion

g="Us (2,8) — Ut (2, 2). (2.9)

The velocity is determined by the relation v = 2(qQ1/ % /w R, which follows from (2.1) and (2.2); in order to cal-
culate the value of the dimensionless time #(z, zy), over which the fluid element being examined reaches the
given section, taking into account (1.5), we have

26 = & 1 Ul (2, 1) dz )
vty 26,V Q VW . (2.10)

At z =z, the condition ¢ =1 must be satisfied, and since the fluid element being examined, and thus the
values of z, are chosen arbitrarily, an integral equationfor 5U/ 8¢, i.e., the rate of growth of the stationary
layer of reaction products, follows in an cbvious manner from (2.10). It may be verified by direct substitution
that the solution of this equation is

14 72 U?

= Bom (2.11)

Indeed, substituting (2.11) into (2.10) and integrating, we find for the change in the value of ¢ along the tra-
jectory of motion of the element, reaching at z =z, the surface of the stationary layer of reaction products,

®(z, z,) = (2/m) arcsin (U/U,), U, = Ulz, 1), (2.12)

from where it indeed follows that at z =z, (U = Uy, ¢ =1. Eliminating from (2.12) with the help of (2.11) and
(2.9), the value of U, we finally obtain the following expression for the distribution of :

2 R 3 0t \2
® = Zarcsin [%—/l/%-}-—é’—(—[]g) J (2.13)

Thus, the value of ¢ depends only on a single unique complex of variables, We also note that, applying
relation (2.11) and (2.13), we can check the validity of the order of smallness of various quantities for U/Qty— 0,
used in the calculations carried out above.

3. We shall now proceed to examine the general case of an arbitrary dependence (1.3) of the fluid vis-
cosity on the residence time in the reactor. In this case, in accordance with the solution of the model problem
obtained above, we shall seek the distribution of the residence time of fluid elements in the flow in the form
of a function of the self-similar variable '

X = (g/Q)(Qt/U)?, (3.1)

while for the rate of growth of the stationary layer of reaction products, in analogy to (2.11), we shall assume
the relation

AU/t = —aX(Ulty)UlQt,, (3.2)

where the constant ¢ must be determined in solving the problem; differentiating (3.2) with respec to z and
taking into account (1.5), the following expression is obtained for the time rate of change of the channel ra-
dius R:
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ORYot = —20X(R¥/t,)U/Qt, (3.3)

The self-similar equation sought is a result of the obvious identity t,ds/dt = 1, which in this case takes the
form )

t(d0/dX)dX/dt = 1, (3.4)

while the value of @ must be such that a solution ¢ = 4(x) of the equation following from (3.4) by substituting
into the expression for dX/dt (it is understood, naturally, that for U/Qt, -~ 0, the total derivative dX/dt will
be a function only of the variable X), satisfying the boundary conditions

9=1fr X=0 8>0 for X— oo (3.5)
exists.

Singce it follows from {3.1), taking info account (2.4) and (1.5) that

daX,__ ox 90X ,  oX X nR?
=5 va—}-war 6t ZU-Z_J_X’ v (3.6)

the calculation of the total derivative dx/dt reduces to finding expressiong for X /8t and v. The basis for
finding the flow velocity v is the equation, following from (1.1),

wdv/or = —(1/2)rdp/dz. 8.7
In accordance with (2.3) and (3.1), we have
dv__ovag 012 :51)é

while since for U/Qt, « 1, the properties of the fluid change only in a narrow layer at the edges of the flow,
for 8p/9z in the limiting case being examined, in accordance with Poiseuille's law [4], we have

Aploz = 8p,Q/nR*. (3.9)
As a result, substituting (3.8), (3.9), and (1.3) into (3.7) and integrating, we obtain for the flow velocity

20
2

) X
F(X)= S (¢ () dz. (3.10)

In order to find the partial derivative 8X/8t, we shall proceed as follows: We shall determine the de-
pendence r =r(t, z, X), and then we shall differentiate the expression obtained with respect to t with fixed z
and X. According to (2.3), ar?/sq =—1/7v, while substituting here (3,10), and integrating, taking into account
(3.1), we have

I*x
34

204, Vi@

~t

X
_1 ES dz (3.11)
0

For the partial derivative 8X/ot, it follows from (3.11) taking into account (3.2) and (3.3),

x
1 0X| _ s 0 90 . ) dz
VF(x) o da (Q 7 T 3a 7 Vi@ (3.12)

Assuming that the change of the fluid flow rate with time, if it occurs, occurs sufficiently slowly, we obtain
from (3.12) for U/Qt,— 0

t,0X/0t = —4a?V F(X). (3.13)

Substituting (3.13) and (3.10) into (3.6) indeed shows that for U/Qt; — 0 the total derivative dX/dt is a
function of only the single self-similar variable X

tdX/dt = —4(X + AV F(X), (3.14)

and, thus, the following self-similar integrodifferential equation follows from (3.4) and (3.14):
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TABLE 1

n a i/t
10 086 | 0,92
5 0,92 | 0,86
2 1,08 } 0,73
i 1,30 | 0,60
1/2 | 1,65 | 047
1/4 | 2,20 | 0,36 T
1/8 3,00 0,26 0 02 04 T
(I (]
Fig. 1
- 1/2
d ; :
T A& +ay Ui(ﬁ (x))dx] : (3.15)

Differentiating (3.15) and eliminating the value of the integral, we obtain a nonlinear differential equation, which
assumes the following form if ¢ is taken as the independent variable:

Y&Y/dg? = (dY/d9)? -+ 8Y?*f(g), ¥ = X -- o= (3.18) .
The solution of Eq. (3.16) must satisfy the boundary conditions ‘
Y- oo for 90, Y =q? dY/d§ =0 for 9 = 1. (3.17)

These conditions, of which the first two correspond to (3.5), while the last condition follows from (3.15) for
X — 0, completely determine the solution and value of @ sought.

In analyzing the boundary-value problem obtained, it is convenient to introduce the variable y = % vY
which in contrast to Y remains bounded for all 4. Transforming to the new variable, we obtain the following
equation from (3.16):

yay/do® = (dy/dg)* — j(9), (3.18)
whose solution must satisfy the conditions ;
y=0 for 9 =0, dy/dd =0 for 9§ = 1. (3.19)

Let us assume that conditions (3.19) are satisfied by two solutions y;(#) and y,(s#) of Eq. (3.18) such that
v4(1) > yy(1). Since it follows from (3.18) that y'(0) = [£(0)1%/2 for these curves, for < — 0, we have v1(8)/ya(8)—
y4(0)/y,%0) =1. At the same time, since Eq. (3.18) can be represented also in the form d?In y/d$% =—y-2(8),
we obtain the following expression for the ratio y,/ys:

yy (9) -2
l yl(ml_ vt —yit| fae <0,
from where it follows that y,( /yg(é‘) Eyi(l)/yz(l) >1, which contradicts the limiting case found earlier for
4 — 0. The contradiction indicated proves the uniqueness of the solution,

The solution of the problem can be found numerically by the ranging method, examining the different in-
. tegral curves of Eq. (3.18) satisfying condition (3.19) with ¢ =1. Integral curves for which y(0) > 0 corre-
spond to the values y(1) > Y,a; if, on the other hand, the curve reaches the y =0 axis for ¢ > 0, then y(1) <
Y.a.

2

Table 1 presents the values of the parameter e obtained numerically for the case [(8) =1 — g1, In addi-
tion, the ratio t, /t = (7/4)/a is indicated. The quantity t, introduced here represents the characteristic
period of time for each fixed law of variation of viscosity. The smaller n, i.e., the earlier viscosity of the
fluid, begins to differ appreciably from the initial value, the smaller is the value of t,. As nincreases, the
function () approaches the case of the jumplike change in viscosity examined in the preceding section, in
which @ = 7/4, and the quantity t, approaches t;.

4. Thus, aside from the hydrodynamic characteristics, the only parameter that determines the rate of
growth of the stationary layer of reaction products is the quantity
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U n? U?

Wzl (4.1)
at 16Qti

while integrating (4.1), after simple transformations, we obtain the following for the change in the free volume
U channel radius R with time: ‘

R(z, 0)/R(z, t) = Uz, 0)/U@, t) =1 + GH)U(z, 0), (4.2)
where the function G(t) is determined by the condition
dG/dt = n®/16Qt%, G (0) = 0s . (4.3)
For any finite value of G, the channel radius differs from 0 and fluid motion is possible.

The relations obtained completely determine the behavior of the system. Thus, if initially there is no
congealed layer of reaction products at the walls of the tube [R(z, 0) = Ryl, then it follows for the radius of the
flow from (4.2)

RyR=1+®()z/L, ®()=G(t)aR:L, (4.4)

while, for the pressure drop, we obtain from (3.9) and (4.4)

SHOO 8H0L0(<D+ 1)° —1
P= §R4 (2, t) nR‘ L) ® (4.5)

In the case of a constant pressure drop, for the fluid flow rate, it follows from (4.5)

Qo _ 5@ nRiP '
00 W, QO Q (0) S}I:L ' (4.6)

and for finding the dependence & (t) we have from (4.3) and (4.6)

T =

@
:n2 ﬂRzL 5q)dq)
= j 4.7

Bog  Juto -1

The dependences & (7) and Q() following from (4.7) and (4.6) are shown in the figure, from where it is evi-
dent that over most of the range of variation, the fluid flow rate is satisfactorily approximated by the first
two terms in a Taylor series expansion, Q/ Q0 ~ 1= 27. The motion of the fluid ceases for

Sede
o_ju 2909 o 0,5756.

I, on the other hand, the flow rate of the fluid is maintained constant, then & = r and from (4.5) we obtain the
following for the pressure drop:

_u+nt—1 — _ Sm0L
po =t—e— P=P0)= s

while from (4.4), we obtain the following for thé change in the channel radius with time:

B n uR H
=143 o g, 4.8)

l
The linearity of the change in the ratio Ry/R permits determining empirically the quantity t, from experi~
ments with constant fluid flow rate.

In conclusion, we point out that if together with the change in the viscosity, the fluid density also changes
from the initial value p, to p;, then instead of (4.1) we shall have

2 2
oU T po U . (4.9)

and an addition corresponding to (4.9) appears in expressions (4.3}, (4.7), and (4.8). The quantity t, in this
case, as before, is determined by the relation t, /ty = (4/7)/a and the function on £(8) = pgoy/ pp w111 appear
only in Egs. (3.16) and (3.18), which are used to f1nd the parameter a (or t,), instead of (1.3).
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EFFECTIVE PERMEABILITY OF A HIGHLY POROUS -MEDIUM

V. I. Selyakov UDC 536.21:620.191.33

The problem of the effective conductivity of a medium with a low concentration of inclusions has been
treated in many papers (e.g., [1]). The case of a medium with a random distribution of circular inclusions
characterized by a binary correlation function was treated in [2] by using the apparatus of ensemble averages.
We use methods of the theory of functions of a complex variable to solve the two-dimensional problem of the
effective permeability of a medium with translational symmetry of an arrangement of circular inclusions.
Since a correlation function does not have to be defined for an ordered arrangement of inclusions, the effec-
tive permeability of the medium can be determined when the concentration of inclusions is not low. By using
methods of the theory of functions of a complex variable, we obtain an effective solution of this kind of prob-
lem for inclusions of arbitrary shape by conformal mapping onto the exterior of a unit circle. In this sense
the solution of the basic problem is reduced. The problem was solved by using the approach developed in [3, 4]
for determining the state of stress of a plane weakened by an infinite number of circular holes. The basic idea
of this approach consists in representing the required solution in the form of a Laurent series by expanding it
in terms of the small parameter ¢ =1/, where [ is the distance between centers of the inclusions, and using
the basic idea of the Bubnov—Galerkin method to find the expansion coefficients. As in the elasticity problem,
this is an effective method of solving transmissibility problems in a medium with an infinite number of in-
clusions. By averaging the solution over a macroscopic volume the effective transmissibility coefficient of
such a medium can be determined.

Filtration in a Medium with Circular Inclusions. Let us consider the steady filtration of a fluid in a
medium with circular inclusions arranged as shown in Fig. 1. Without loss of generality, we take the inclusions
of unit radius. The distances along the x and y axes between the centers of neighboring circles are assumed
equal to . Thus, the centers of the circles lie at the points

Za,p = l(n + ip)v

where i =v—-1;n=0, %1, £2,..., +; p=0, £2, ... £°, As in [5], it is convenient to describe fiitration flow
by introducing the complex potentials

oy = (ky/p)Py + ihy, v =0, 1.

Here ¢, corresponds to the filtration region in the medium outside an inclusion, and ¢, tothe region inside an
inclusion; the k; are the permeabilities of the medium and inclusion, respectively; y is the viscosity of the
fluid; the P, are the pressures of the fluid in the medium and within an inclusion respectively; the o p are the
flow functions. The complex potentials must satisfy Laplace's equation

Py = 0 . (1)

and are analytic in the respective domains of definition. In addition, the joining conditions

] 2 .

5 e @0 =50 Re gy @
41 35 1

ERGE’.(PD: %Reiﬂ:(pl' (3)
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